An ItemStack gains the tag name "tag" when the stack is serialized
to NBT, however items don't have a tag *until* they are serialized at
least once. So to solve this, we remove the tag name when loading the
NBT data.
Another problem with NBT are TagLists, when transferring tag lists
between the server and the client the names are lost, and so we
simply don't add a name to the tag.
If you cancel a BlockPlaceEvent for a sign the world is updated as if
the block was placed and then destroyed. To avoid this we set the block
without updating physics then apply the update after the event.
When unloading chunks we have a check to ensure we do not remove players
from the world due to the issues this would cause. However, our check
to see if the player is in this chunk is reversed and is in fact entirely
wrong. Even if the player isn't currently in this chunk we do not want
to remove them as that will still cause the same issues.
The key "direction" incorrectly mapped to variables that were already
set in the entity. In order to prevent loading incorrect data we
renamed "direction" to "power."
The player would have no permissions (other than their OP status)
when checked in the Quit event. This is because we removed permissions
before the event occurred. By calling it afterwards, we can persist
the data until the server finally removes the player.
In some situations, an async task could be cancelled with no tasks
pending. This means the finally {} block from run() never gets executed
properly on the last async task to have run, as it expected to be
executed again.
This fix takes the only spot that the task period is set to cancelled
and will check to see if the task should be purged from the runners
list.
Some meta functionality is refactored into common methods.
CraftItemStack uses the ItemMetaKey identifiers for enchantments.
Refactored unit test to include extra functionality; initially only
checking the presence of the DelegateDeserialization annotation.
The setTexturePack method causes the player's client to
download and switch to a texture pack specified by a URL.
Note: Players can disable server textures on their client, in which
case this API would not affect them.
With 1.4, entity sound tracking changed for the better.
Our previous method additions can now be removed.
All that's left is checking if the source can be seen
by the recipient of the sound packet. Thanks, Mojang!
The purpose of the isSimilar method was designed to consider all NBT
data, not solely enchantments, without the need to have exact stack
size matches. The respective methods in CraftInventory were still
comparing enchantments instead of the ItemMeta.
Changes some NPEs to IllegalArgumentExceptions for exception consistency.
Contains(ItemStack, int) correctly calculates number of ItemStacks.
Adds a containsAtLeast(ItemStack, int) for finding a combined amount of a
single similar ItemStack.
Makes some utility methods private to prevent ambiguity in use.
When a player triggers a chunk load via walking around or teleporting there
is no need to stop everything and get this chunk on the main thread. The
client is used to having to wait some time for this chunk and the server
doesn't immediately do anything with it except send it to the player. At
the same time chunk loading is the last major source of file IO that still
runs on the main thread.
These two facts make it possible to offload chunks loaded for this reason
to another thread. However, not all parts of chunk loading can happen off
the main thread. For this we use the new AsynchronousExecutor system to
split chunk loading in to three pieces. The first is loading data from
disk, decompressing it, and parsing it in to an NBT structure. The second
piece is creating entities and tile entities in the chunk and adding them
to the world, this is still done on the main thread. The third piece is
informing everyone who requested a chunk load that the load is finished.
For this we register callbacks and then run them on the main thread once
the previous two stages are finished.
There are still cases where a chunk is needed immediately and these will
still trigger chunk loading entirely on the main thread. The most obvious
case is plugins using the API to request a chunk load. We also must load
the chunk immediately when something in the world tries to access it. In
these cases we ignore any possibly pending or in progress chunk loading
that is happening asynchronously as we will have the chunk loaded by the
time they are finished.
The hope is that overall this system will result in less CPU time and
pauses due to blocking file IO on the main thread thus giving more
consistent performance. Testing so far has shown that this also speeds up
chunk loading client side although some of this is likely to be because
we are sending less chunks at once for the client to process.
Thanks for @ammaraskar for help with the implementation of this feature.