Currently when a plugin wants to get the location of something it calls
getLocation() which returns a new Location object. In some scenarios this
can cause enough object creation/destruction churn to be a significant
overhead. For this cases we add a method that updates a provided Location
object so there is no object creation done. This allows well written code
to work on several locations with only a single Location object getting
created.
Providing a more efficient way to set a location was also looked at but
the current solution is the fastest we can provide. You are not required
to create a new Location object every time you want to set something's
location so, with proper design, you can set locations with only a single
Location object being created.
As of 1.4 mobs have a flag to determine if they despawn when away from a
player or not. Unfortunately animals still use their own system to prevent
despawning instead of making use of this flag. This change modifies them
to use the new system (defaults to true) and to add API for plugins to adjust
this.
Stale player references will add a player back into the world when
teleporting them, causing a cascade of issues relating to ghost entities
and servers failing to stop.
This is a missed part of the original "[Bleeding] Use case from player data
for OfflinePlayer. Fixes BUKKIT-519" commit. It avoids doing (somewhat
expensive) lookups of player data to find the correct capitalization inside
getOfflinePlayers() as we're already loading their name from the player data
and thus have the correct capitalization.
If a plugin looks up a player that is offline they may not know the correct
capitalization for the name. In this case they're likely to get it wrong
and since we cache the result even after the player joins the server all
future request for an OfflinePlayer will return one with incorrect case.
When looking up a player who has played on the server before we can
get the correct case from the player data file saved by the server. If
the player has never played before this point we cannot do anything and
will still have the same issue but this is not a solvable problem.
Skulls need their tile entity in order to create an item correctly when
broken unlike every other block. Instead of sprinkling special cases all
over the code just override dropNaturally for skulls to read from their
tile entity and make sure everything that wants to drop them calls this
method before removing the block. There is only one case where this wasn't
already true so we end up with much less special casing.
The static assertions are not normally evaluated in the JVM, and failed
to fail when the enums went from size 25 to size 26. This meant missing
values would not be detected at runtime and instead return null,
compounding problems later. The switches should never evaluate to null
so will instead throw runtime assertion errors.
Additional unit tests were added to detect new paintings and assure they
have proper, unique mappings. The test checks both that a mapping
exists, is not null, and does not duplicate another mapping.
If a defensive copy is not used in the API, changes to the item are
reflected in memory, but never updated to the client. It also goes
against the general contract provided in Bukkit, where setItem should be
the only way to change the underlying item frame.
Skull blocks store their type in a tile entity and use their block data
as rotation. When breaking a block the block data is used for determining
what item to drop. Simply changing this to use the skull method for getting
their drop data is not enough because their tile entity is already gone.
Therefore we have to special case skulls to get the correct data _and_ get
that data before breaking the block.
CommandMap now contains the functionality for tab completion. This
commit replaces the vanilla implementation and simply delegates it to
the Bukkit API.
This change affects the old chat compatibility layer from an
implementation only standpoint. It does not queue the 'event' to fire,
but rather queues a runnable that allows the calling thread to wait for
execution to finish.
The other effect of this change is that rcon connects now have their
commands queued to be run on next server tick using the same
implementation.
The internal implementation is in org.bukkit.craftbukkit.util.Waitable.
It is very similar to a Future<T> task, but only contains minimal
implementation with object.wait() and object.notify() calls
under the hood of waitable.get() and waitable.run().
PlayerPreLoginEvent now properly implements thread-safe event execution
by queuing the events similar to chat and rcon. This is still a poor way
albeit proper way to implement thread-safety; PlayerPreLoginEvent will
stay deprecated.
The implementation for the new methods mimics the old methods. The final
call for the old methods now maps to the new methods with an additional
call to get id.
If two players (or a player and any other entity) are teleported to the
same location in the same tick they will both get added to the other's
destroy queue then have a new entity spawn packet sent. Next tick the
destroy queue will be processed and they will then be invisible to each
other. To prevent this situation we remove the entity from the destroy
queue when sending out a spawn packet for them.
If a plugin calls player.hidePlayer(other); then player.showPlayer(other);
in the same tick the other player will be added to the entity destroy queue
then a spawn packet will be sent. On the next tick the queue will be
processed and a destroy packet will be sent that renders the other player
invisible. To correct this we ensure the destroy queue is in sync with use
of the vanish API.
An internal method for making the debug output for CraftScheduler's
async tasks was erroneously using the 'this' reference when the loop
should be referencing the current task.
This change was done to remove the internal sound names from the API.
Along with moving the internal names into CraftBukkit, a unit test was
added for any new sounds added in the API to assure they have a non-null
mapping.
After further testing it appears that while the original LongHashtable
has issues with object creation churn and is severly slower than even
java.util.HashMap in general case benchmarks it is in fact very efficient
for our use case.
With this in mind I wrote a replacement LongObjectHashMap modeled after
LongHashtable. Unlike the original implementation this one does not use
Entry objects for storage so does not have the same object creation churn.
It also uses a 2D array instead of a 3D one and does not use a cache as
benchmarking shows this is more efficient. The "bucket size" was chosen
based on benchmarking performance of the HashMap with contents that would
be plausible for a 200+ player server. This means it uses a little extra
memory for smaller servers but almost always uses less than the normal
java.util.HashMap.
To make up for the original LongHashtable being a poor choice for generic
datasets I added a mixer to the new implementation based on code from
MurmurHash. While this has no noticable effect positive or negative with
our normal use of chunk coordinates it makes the HashMap perform just as
well with nearly any kind of dataset.
After these changes ChunkProviderServer.isChunkLoaded() goes from using
20% CPU time while sampling to not even showing up after 45 minutes of
sampling due to the CPU usage being too low to be noticed.
The new setting is located at "ticks-per.autosave". By changing this
value, it affects how often a full save is automatically executed,
measured in ticks.
This value is defaulting to 0 (off) because we believe that the vast
majority of servers already have a third-party solution to automatically
saving the server at set intervals. Having the built in auto-save disabled
by default ensures that we are not saving things twice; doing so leads to
absolutely no benefits, but results in detrimental and noticeable
unnecessary performance decrease.
For servers that do not use an automated external script to perform saves,
this setting can be turned on by setting the value higher than 0, with 900
being the value used in vanilla.