Reference_Linking/RLBench.c
2023-03-16 12:28:35 +01:00

302 Zeilen
8.8 KiB
C

// This is adapted from a benchmark written by John Ellis and Pete Kovac
// of Post Communications.
// It was modified by Hans Boehm of Silicon Graphics.
// Translated to C++ 30 May 1997 by William D Clinger of Northeastern Univ.
// Translated to C 15 March 2000 by Hans Boehm, now at HP Labs.
//
// This is no substitute for real applications. No actual application
// is likely to behave in exactly this way. However, this benchmark was
// designed to be more representative of real applications than other
// Java GC benchmarks of which we are aware.
// It attempts to model those properties of allocation requests that
// are important to current GC techniques.
// It is designed to be used either to obtain a single overall performance
// number, or to give a more detailed estimate of how collector
// performance varies with object lifetimes. It prints the time
// required to allocate and collect balanced binary trees of various
// sizes. Smaller trees result in shorter object lifetimes. Each cycle
// allocates roughly the same amount of memory.
// Two data structures are kept around during the entire process, so
// that the measured performance is representative of applications
// that maintain some live in-memory data. One of these is a tree
// containing many pointers. The other is a large array containing
// double precision floating point numbers. Both should be of comparable
// size.
//
// The results are only really meaningful together with a specification
// of how much memory was used. It is possible to trade memory for
// better time performance. This benchmark should be run in a 32 MB
// heap, though we don't currently know how to enforce that uniformly.
//
// Unlike the original Ellis and Kovac benchmark, we do not attempt
// measure pause times. This facility should eventually be added back
// in. There are several reasons for omitting it for now. The original
// implementation depended on assumptions about the thread scheduler
// that don't hold uniformly. The results really measure both the
// scheduler and GC. Pause time measurements tend to not fit well with
// current benchmark suites. As far as we know, none of the current
// commercial Java implementations seriously attempt to minimize GC pause
// times.
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include "rl.h"
#ifdef GC
# include "gc.h"
#endif
#ifdef PROFIL
extern void init_profiling();
extern dump_profile();
#endif
// These macros were a quick hack for the Macintosh.
//
// #define currentTime() clock()
// #define elapsedTime(x) ((1000*(x))/CLOCKS_PER_SEC)
#define currentTime() stats_rtclock()
#define elapsedTime(x) (x)
/* Get the current time in milliseconds */
unsigned
stats_rtclock( void )
{
struct timeval t;
struct timezone tz;
if (gettimeofday( &t, &tz ) == -1)
return 0;
return (t.tv_sec * 1000 + t.tv_usec / 1000);
}
static const int kStretchTreeDepth = 18; // about 16Mb
static const int kLongLivedTreeDepth = 16; // about 4Mb
static const int kArraySize = 500000; // about 4Mb
static const int kMinTreeDepth = 4;
static const int kMaxTreeDepth = 16;
typedef struct Node0_struct {
Rl left;
Rl right;
int i, j;
} Node0;
#ifdef HOLES
# define HOLE() GC_NEW(Node0);
#else
# define HOLE()
#endif
typedef Rl* Node;
#define TO_NODE(rl) ((Node0*) (rl)->ref)
void init_Node(Node me, Node l, Node r) {
Node0* node = TO_NODE(me);
rl_set(&node->left, me->ref, l);
rl_set(&node->right, me->ref, r);
}
#ifndef GC
void destroy_Node(void* me) {
Node0* node = (Node0*)me;
if(node->left.ref)
rl_free(&node->left);
if(node->right.ref)
rl_free(&node->right);
}
#endif
// Nodes used by a tree of a given size
static int TreeSize(int i) {
return ((1 << (i + 1)) - 1);
}
// Number of iterations to use for a given tree depth
static int NumIters(int i) {
return 2 * TreeSize(kStretchTreeDepth) / TreeSize(i);
}
// Build tree top down, assigning to older objects.
static void Populate(int iDepth, Node thisNode) {
Node0* node = TO_NODE(thisNode);
if (iDepth<=0) {
node->left.ref = NULL;
node->right.ref = NULL;
return;
} else {
iDepth--;
# ifdef GC
thisNode->left = GC_NEW(Node0); HOLE();
thisNode->right = GC_NEW(Node0); HOLE();
# else
rl_alloc(&node->left, node, sizeof(Node0), destroy_Node);
rl_alloc(&node->right, node, sizeof(Node0), destroy_Node);
# endif
Populate (iDepth, &node->left);
Populate (iDepth, &node->right);
}
}
// Build tree bottom-up
static void MakeTree(Node result, int iDepth) {
if (iDepth<=0) {
# ifndef GC
rl_alloc(result, NULL, sizeof(Node0), destroy_Node);
Node0* node = TO_NODE(result);
node->left.ref = NULL;
node->right.ref = NULL;
# else
result = GC_NEW(Node0); HOLE();
# endif
/* result is implicitly initialized in both cases. */
} else {
Rl left, right;
MakeTree(&left, iDepth-1);
MakeTree(&right, iDepth-1);
# ifndef GC
rl_alloc(result, NULL, sizeof(Node0), destroy_Node);
# else
result = GC_NEW(Node0); HOLE();
# endif
init_Node(result, &left, &right);
printf("Set works\n");
rl_free(&left);
rl_free(&right);
}
}
static void PrintDiagnostics() {
#if 0
long lFreeMemory = Runtime.getRuntime().freeMemory();
long lTotalMemory = Runtime.getRuntime().totalMemory();
System.out.print(" Total memory available="
+ lTotalMemory + " bytes");
System.out.println(" Free memory=" + lFreeMemory + " bytes");
#endif
}
static void TimeConstruction(int depth) {
long tStart, tFinish;
int iNumIters = NumIters(depth);
Rl tempTree;
int i;
printf("Creating %d trees of depth %d\n", iNumIters, depth);
tStart = currentTime();
for (i = 0; i < iNumIters; ++i) {
# ifndef GC
rl_alloc(&tempTree, NULL, sizeof(Node0), destroy_Node);
# else
tempTree = GC_NEW(Node0);
# endif
Populate(depth, &tempTree);
# ifndef GC
rl_free(&tempTree);
# endif
}
tFinish = currentTime();
printf("\tTop down construction took %d msec\n",
elapsedTime(tFinish - tStart));
tStart = currentTime();
for (i = 0; i < iNumIters; ++i) {
MakeTree(&tempTree, depth);
# ifndef GC
rl_free(&tempTree);
# endif
}
tFinish = currentTime();
printf("\tBottom up construction took %d msec\n",
elapsedTime(tFinish - tStart));
}
int main() {
Node root;
Node longLivedTree;
Rl tempTree;
long tStart, tFinish;
long tElapsed;
int i, d;
double *array;
#ifdef GC
// GC_full_freq = 30;
// GC_free_space_divisor = 16;
// GC_enable_incremental();
#endif
printf("Garbage Collector Test\n");
printf(" Live storage will peak at %d bytes.\n\n",
2 * sizeof(Node0) * TreeSize(kLongLivedTreeDepth) +
sizeof(double) * kArraySize);
printf(" Stretching memory with a binary tree of depth %d\n",
kStretchTreeDepth);
PrintDiagnostics();
# ifdef PROFIL
init_profiling();
# endif
tStart = currentTime();
// Stretch the memory space quickly
MakeTree(&tempTree, kStretchTreeDepth);
printf("Made tree\n");
# ifndef GC
rl_free(&tempTree);
# endif
// Create a long lived object
printf(" Creating a long-lived binary tree of depth %d\n",
kLongLivedTreeDepth);
# ifndef GC
rl_alloc(longLivedTree, NULL, sizeof(Node0), destroy_Node);
# else
longLivedTree = GC_NEW(Node0);
# endif
Populate(kLongLivedTreeDepth, longLivedTree);
// Create long-lived array, filling half of it
printf(" Creating a long-lived array of %d doubles\n", kArraySize);
# ifndef GC
array = malloc(kArraySize * sizeof(double));
# else
# ifndef NO_PTRFREE
array = GC_MALLOC_ATOMIC(sizeof(double) * kArraySize);
# else
array = GC_MALLOC(sizeof(double) * kArraySize);
# endif
# endif
for (i = 0; i < kArraySize/2; ++i) {
array[i] = 1.0/i;
}
PrintDiagnostics();
for (d = kMinTreeDepth; d <= kMaxTreeDepth; d += 2) {
TimeConstruction(d);
}
if (longLivedTree == 0 || array[1000] != 1.0/1000)
fprintf(stderr, "Failed\n");
// fake reference to LongLivedTree
// and array
// to keep them from being optimized away
tFinish = currentTime();
tElapsed = elapsedTime(tFinish-tStart);
PrintDiagnostics();
printf("Completed in %d msec\n", tElapsed);
# ifdef GC
printf("Completed %d collections\n", GC_gc_no);
printf("Heap size is %d\n", GC_get_heap_size());
# endif
# ifdef PROFIL
dump_profile();
# endif
}