13
0
geforkt von Mirrors/Paper
Paper/patches/api/0143-Async-Chunks-API.patch
Nassim Jahnke 31699ae9a8
Updated Upstream (Bukkit/CraftBukkit) (#10242)
* Updated Upstream (Bukkit/CraftBukkit)

Upstream has released updates that appear to apply and compile correctly.
This update has not been tested by PaperMC and as with ANY update, please do your own testing

Bukkit Changes:
a6a9d2a4 Remove some old ApiStatus.Experimental annotations
be72314c SPIGOT-7300, PR-829: Add new DamageSource API providing enhanced information about entity damage
b252cf05 SPIGOT-7576, PR-970: Add methods in MushroomCow to change stew effects
b1c689bd PR-902: Add Server#isLoggingIPs to get log-ips configuration
08f86d1c PR-971: Add Player methods for client-side potion effects
2e3024a9 PR-963: Add API for in-world structures
a23292a7 SPIGOT-7530, PR-948: Improve Resource Pack API with new 1.20.3 functionality
1851857b SPIGOT-3071, PR-969: Add entity spawn method with spawn reason
cde4c52a SPIGOT-5553, PR-964: Add EntityKnockbackEvent

CraftBukkit Changes:
38fd4bd50 Fix accidentally renamed internal damage method
80f0ce4be SPIGOT-7300, PR-1180: Add new DamageSource API providing enhanced information about entity damage
7e43f3b16 SPIGOT-7581: Fix typo in BlockMushroom
ea14b7d90 SPIGOT-7576, PR-1347: Add methods in MushroomCow to change stew effects
4c687f243 PR-1259: Add Server#isLoggingIPs to get log-ips configuration
22a541a29 Improve support for per-world game rules
cb7dccce2 PR-1348: Add Player methods for client-side potion effects
b8d6109f0 PR-1335: Add API for in-world structures
4398a1b5b SPIGOT-7577: Make CraftWindCharge#explode discard the entity
e74107678 Fix Crafter maximum stack size
0bb0f4f6a SPIGOT-7530, PR-1314: Improve Resource Pack API with new 1.20.3 functionality
4949f556d SPIGOT-3071, PR-1345: Add entity spawn method with spawn reason
20ac73ca2 PR-1353: Fix Structure#place not working as documented with 0 palette
3c1b77871 SPIGOT-6911, PR-1349: Change max book length in CraftMetaBook
333701839 SPIGOT-7572: Bee nests generated without bees
f48f4174c SPIGOT-5553, PR-1336: Add EntityKnockbackEvent
2024-02-11 22:28:00 +01:00

525 Zeilen
24 KiB
Diff

From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Aikar <aikar@aikar.co>
Date: Mon, 29 Feb 2016 17:43:33 -0600
Subject: [PATCH] Async Chunks API
Adds API's to load or generate chunks asynchronously.
Also adds utility methods to Entity to teleport asynchronously.
diff --git a/src/main/java/org/bukkit/World.java b/src/main/java/org/bukkit/World.java
index 25ff747e23e7373bb96ca9109df7e46cdefdcd2e..116bad653e92efbfd576f3b146c0a9e40afbbe10 100644
--- a/src/main/java/org/bukkit/World.java
+++ b/src/main/java/org/bukkit/World.java
@@ -941,6 +941,472 @@ public interface World extends RegionAccessor, WorldInfo, PluginMessageRecipient
}
// Paper end - additional getNearbyEntities API
+ // Paper start - async chunks API
+ /**
+ * This is the Legacy API before Java 8 was supported. Java 8 Consumer is provided,
+ * as well as future support
+ *
+ * Used by {@link World#getChunkAtAsync(Location,ChunkLoadCallback)} methods
+ * to request a {@link Chunk} to be loaded, with this callback receiving
+ * the chunk when it is finished.
+ *
+ * This callback will be executed on synchronously on the main thread.
+ *
+ * Timing and order this callback is fired is intentionally not defined and
+ * and subject to change.
+ *
+ * @deprecated Use either the Future or the Consumer based methods
+ */
+ @Deprecated
+ public static interface ChunkLoadCallback extends java.util.function.Consumer<Chunk> {
+ public void onLoad(@NotNull Chunk chunk);
+
+ // backwards compat to old api
+ @Override
+ default void accept(@NotNull Chunk chunk) {
+ onLoad(chunk);
+ }
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link ChunkLoadCallback} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @deprecated Use either the Future or the Consumer based methods
+ * @param x Chunk X-coordinate of the chunk - floor(world coordinate / 16)
+ * @param z Chunk Z-coordinate of the chunk - floor(world coordinate / 16)
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ @Deprecated
+ public default void getChunkAtAsync(int x, int z, @NotNull ChunkLoadCallback cb) {
+ getChunkAtAsync(x, z, true).thenAccept(cb::onLoad).exceptionally((ex) -> {
+ Bukkit.getLogger().log(java.util.logging.Level.WARNING, "Exception in chunk load callback", ex);
+ return null;
+ });
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given {@link Location}
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link ChunkLoadCallback} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @deprecated Use either the Future or the Consumer based methods
+ * @param loc Location of the chunk
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ @Deprecated
+ public default void getChunkAtAsync(@NotNull Location loc, @NotNull ChunkLoadCallback cb) {
+ getChunkAtAsync(loc, true).thenAccept(cb::onLoad).exceptionally((ex) -> {
+ Bukkit.getLogger().log(java.util.logging.Level.WARNING, "Exception in chunk load callback", ex);
+ return null;
+ });
+ }
+
+ /**
+ * Requests {@link Chunk} to be loaded that contains the given {@link Block}
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link ChunkLoadCallback} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @deprecated Use either the Future or the Consumer based methods
+ * @param block Block to get the containing chunk from
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ @Deprecated
+ public default void getChunkAtAsync(@NotNull Block block, @NotNull ChunkLoadCallback cb) {
+ getChunkAtAsync(block, true).thenAccept(cb::onLoad).exceptionally((ex) -> {
+ Bukkit.getLogger().log(java.util.logging.Level.WARNING, "Exception in chunk load callback", ex);
+ return null;
+ });
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link java.util.function.Consumer} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param x Chunk X-coordinate of the chunk - floor(world coordinate / 16)
+ * @param z Chunk Z-coordinate of the chunk - floor(world coordinate / 16)
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ default void getChunkAtAsync(final int x, final int z, final @NotNull Consumer<? super Chunk> cb) {
+ this.getChunkAtAsync(x, z, true).thenAccept(cb).exceptionally((ex) -> {
+ Bukkit.getLogger().log(java.util.logging.Level.WARNING, "Exception in chunk load callback", ex);
+ return null;
+ });
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link java.util.function.Consumer} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param x Chunk X-coordinate of the chunk - floor(world coordinate / 16)
+ * @param z Chunk Z-coordinate of the chunk - floor(world coordinate / 16)
+ * @param gen Should we generate a chunk if it doesn't exist or not
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ default void getChunkAtAsync(final int x, final int z, final boolean gen, final @NotNull Consumer<? super Chunk> cb) {
+ this.getChunkAtAsync(x, z, gen).thenAccept(cb).exceptionally((ex) -> {
+ Bukkit.getLogger().log(java.util.logging.Level.WARNING, "Exception in chunk load callback", ex);
+ return null;
+ });
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given {@link Location}
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link java.util.function.Consumer} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param loc Location of the chunk
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ default void getChunkAtAsync(final @NotNull Location loc, final @NotNull Consumer<? super Chunk> cb) {
+ this.getChunkAtAsync((int) Math.floor(loc.getX()) >> 4, (int) Math.floor(loc.getZ()) >> 4, true, cb);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given {@link Location}
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link java.util.function.Consumer} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param loc Location of the chunk
+ * @param gen Should the chunk generate if it doesn't exist
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ default void getChunkAtAsync(final @NotNull Location loc, final boolean gen, final @NotNull Consumer<? super Chunk> cb) {
+ this.getChunkAtAsync((int) Math.floor(loc.getX()) >> 4, (int) Math.floor(loc.getZ()) >> 4, gen, cb);
+ }
+
+ /**
+ * Requests {@link Chunk} to be loaded that contains the given {@link Block}
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link java.util.function.Consumer} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param block Block to get the containing chunk from
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ default void getChunkAtAsync(final @NotNull Block block, final @NotNull Consumer<? super Chunk> cb) {
+ this.getChunkAtAsync(block.getX() >> 4, block.getZ() >> 4, true, cb);
+ }
+
+ /**
+ * Requests {@link Chunk} to be loaded that contains the given {@link Block}
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link java.util.function.Consumer} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param block Block to get the containing chunk from
+ * @param gen Should the chunk generate if it doesn't exist
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ default void getChunkAtAsync(final @NotNull Block block, final boolean gen, final @NotNull Consumer<? super Chunk> cb) {
+ this.getChunkAtAsync(block.getX() >> 4, block.getZ() >> 4, gen, cb);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ * @param loc Location to load the corresponding chunk from
+ * @return Future that will resolve when the chunk is loaded
+ */
+ default @NotNull java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsync(final @NotNull Location loc) {
+ return this.getChunkAtAsync((int) Math.floor(loc.getX()) >> 4, (int) Math.floor(loc.getZ()) >> 4, true);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ * @param loc Location to load the corresponding chunk from
+ * @param gen Should the chunk generate if it doesn't exist
+ * @return Future that will resolve when the chunk is loaded
+ */
+ default @NotNull java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsync(final @NotNull Location loc, final boolean gen) {
+ return this.getChunkAtAsync((int) Math.floor(loc.getX()) >> 4, (int) Math.floor(loc.getZ()) >> 4, gen);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ * @param block Block to load the corresponding chunk from
+ * @return Future that will resolve when the chunk is loaded
+ */
+ default @NotNull java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsync(final @NotNull Block block) {
+ return this.getChunkAtAsync(block.getX() >> 4, block.getZ() >> 4, true);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ * @param block Block to load the corresponding chunk from
+ * @param gen Should the chunk generate if it doesn't exist
+ * @return Future that will resolve when the chunk is loaded
+ */
+ default @NotNull java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsync(final @NotNull Block block, final boolean gen) {
+ return this.getChunkAtAsync(block.getX() >> 4, block.getZ() >> 4, gen);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param x Chunk X-coordinate of the chunk - floor(world coordinate / 16)
+ * @param z Chunk Z-coordinate of the chunk - floor(world coordinate / 16)
+ * @return Future that will resolve when the chunk is loaded
+ */
+ default @NotNull java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsync(final int x, final int z) {
+ return this.getChunkAtAsync(x, z, true);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param x Chunk X-coordinate of the chunk - floor(world coordinate / 16)
+ * @param z Chunk Z-coordinate of the chunk - floor(world coordinate / 16)
+ * @param gen Should we generate a chunk if it doesn't exist or not
+ * @return Future that will resolve when the chunk is loaded
+ */
+ default @NotNull java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsync(final int x, final int z, final boolean gen) {
+ return this.getChunkAtAsync(x, z, gen, false);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ * @param loc Location to load the corresponding chunk from
+ * @return Future that will resolve when the chunk is loaded
+ */
+ default @NotNull java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsyncUrgently(final @NotNull Location loc) {
+ return this.getChunkAtAsync((int) Math.floor(loc.getX()) >> 4, (int) Math.floor(loc.getZ()) >> 4, true, true);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ * @param loc Location to load the corresponding chunk from
+ * @param gen Should the chunk generate if it doesn't exist
+ * @return Future that will resolve when the chunk is loaded
+ */
+ default @NotNull java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsyncUrgently(final @NotNull Location loc, final boolean gen) {
+ return this.getChunkAtAsync((int) Math.floor(loc.getX()) >> 4, (int) Math.floor(loc.getZ()) >> 4, gen, true);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ * @param block Block to load the corresponding chunk from
+ * @return Future that will resolve when the chunk is loaded
+ */
+ default @NotNull java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsyncUrgently(final @NotNull Block block) {
+ return this.getChunkAtAsync(block.getX() >> 4, block.getZ() >> 4, true, true);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ * @param block Block to load the corresponding chunk from
+ * @param gen Should the chunk generate if it doesn't exist
+ * @return Future that will resolve when the chunk is loaded
+ */
+ default @NotNull java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsyncUrgently(final @NotNull Block block, final boolean gen) {
+ return this.getChunkAtAsync(block.getX() >> 4, block.getZ() >> 4, gen, true);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param x X Coord
+ * @param z Z Coord
+ * @return Future that will resolve when the chunk is loaded
+ */
+ default @NotNull java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsyncUrgently(final int x, final int z) {
+ return this.getChunkAtAsync(x, z, true, true);
+ }
+
+ java.util.concurrent.@NotNull CompletableFuture<Chunk> getChunkAtAsync(int x, int z, boolean gen, boolean urgent);
+ // Paper end - async chunks API
+
/**
* Get a list of all players in this World
*
diff --git a/src/main/java/org/bukkit/entity/Entity.java b/src/main/java/org/bukkit/entity/Entity.java
index 77a706dde5995a8a6306b1d0a144dd37d580dea3..14e42959033919ff6409e48ddf01c0f15c28eb10 100644
--- a/src/main/java/org/bukkit/entity/Entity.java
+++ b/src/main/java/org/bukkit/entity/Entity.java
@@ -168,6 +168,33 @@ public interface Entity extends Metadatable, CommandSender, Nameable, Persistent
*/
public boolean teleport(@NotNull Entity destination, @NotNull TeleportCause cause);
+ // Paper start
+ /**
+ * Loads/Generates(in 1.13+) the Chunk asynchronously, and then teleports the entity when the chunk is ready.
+ * @param loc Location to teleport to
+ * @return A future that will be completed with the result of the teleport
+ */
+ @NotNull
+ public default java.util.concurrent.CompletableFuture<Boolean> teleportAsync(@NotNull Location loc) {
+ return teleportAsync(loc, TeleportCause.PLUGIN);
+ }
+ /**
+ * Loads/Generates(in 1.13+) the Chunk asynchronously, and then teleports the entity when the chunk is ready.
+ * @param loc Location to teleport to
+ * @param cause Reason for teleport
+ * @return A future that will be completed with the result of the teleport
+ */
+ @NotNull
+ public default java.util.concurrent.CompletableFuture<Boolean> teleportAsync(@NotNull Location loc, @NotNull TeleportCause cause) {
+ java.util.concurrent.CompletableFuture<Boolean> future = new java.util.concurrent.CompletableFuture<>();
+ loc.getWorld().getChunkAtAsyncUrgently(loc).thenAccept((chunk) -> future.complete(teleport(loc, cause))).exceptionally(ex -> {
+ future.completeExceptionally(ex);
+ return null;
+ });
+ return future;
+ }
+ // Paper end
+
/**
* Returns a list of entities within a bounding box centered around this
* entity