13
0
geforkt von Mirrors/Paper

Improved Vector and Location with some utility methods, optimized Vector.isInSphere().

By: sk89q <the.sk89q@gmail.com>
Dieser Commit ist enthalten in:
Bukkit/Spigot 2011-01-02 10:42:13 -08:00
Ursprung f6873cab82
Commit 61b42932b1
2 geänderte Dateien mit 419 neuen und 352 gelöschten Zeilen

Datei anzeigen

@ -60,6 +60,16 @@ public class Location implements Cloneable {
public double getX() {
return x;
}
/**
* Gets the floored value of the X component, indicating the block that
* this location is contained with.
*
* @return block X
*/
public int getBlockX() {
return (int)Math.floor(x);
}
/**
* Sets the y-coordinate of this location
@ -79,6 +89,16 @@ public class Location implements Cloneable {
return y;
}
/**
* Gets the floored value of the Y component, indicating the block that
* this location is contained with.
*
* @return block y
*/
public int getBlockY() {
return (int)Math.floor(y);
}
/**
* Sets the z-coordinate of this location
*
@ -97,6 +117,16 @@ public class Location implements Cloneable {
return z;
}
/**
* Gets the floored value of the Z component, indicating the block that
* this location is contained with.
*
* @return block z
*/
public int getBlockZ() {
return (int)Math.floor(z);
}
/**
* Sets the yaw of this location
*

Datei anzeigen

@ -1,352 +1,389 @@
package org.bukkit;
/**
* Represents a mutable vector.
*
* @author sk89q
*/
public class Vector implements Cloneable {
private static final long serialVersionUID = -2657651106777219169L;
protected double x;
protected double y;
protected double z;
public Vector(int x, int y, int z) {
this.x = x;
this.y = y;
this.z = z;
}
public Vector(double x, double y, double z) {
this.x = x;
this.y = y;
this.z = z;
}
public Vector(float x, float y, float z) {
this.x = x;
this.y = y;
this.z = z;
}
/**
* Adds the vector by another.
*
* @param vec
* @return the same vector
*/
public Vector add(Vector vec) {
x += vec.x;
y += vec.y;
z += vec.z;
return this;
}
/**
* Subtracts the vector by another.
*
* @param vec
* @return the same vector
*/
public Vector subtract(Vector vec) {
x -= vec.x;
y -= vec.y;
z -= vec.z;
return this;
}
/**
* Multiplies the vector by another.
*
* @param vec
* @return the same vector
*/
public Vector multiply(Vector vec) {
x *= vec.x;
y *= vec.y;
z *= vec.z;
return this;
}
/**
* Divides the vector by another.
*
* @param vec
* @return the same vector
*/
public Vector divide(Vector vec) {
x /= vec.x;
y /= vec.y;
z /= vec.z;
return this;
}
/**
* Gets the magnitude of the vector, defined as sqrt(x^2+y^2+z^2). The value
* of this method is not cached and uses a costly square-root function, so
* do not repeatedly call this method to get the vector's magnitude.
*
* @return the magnitude
*/
public double length() {
return Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2) + Math.pow(z, 2));
}
/**
* Get the distance between this vector and another. The value
* of this method is not cached and uses a costly square-root function, so
* do not repeatedly call this method to get the vector's magnitude.
*
* @return the distance
*/
public double distance(Vector o) {
return Math.sqrt(Math.pow(x - o.x, 2) + Math.pow(y - o.y, 2)
+ Math.pow(z - o.z, 2));
}
/**
* Performs scalar multiplication, multiplying all components with a scalar.
*
* @param m
* @return the same vector
*/
public Vector multiply(int m) {
x *= m;
y *= m;
z *= m;
return this;
}
/**
* Performs scalar multiplication, multiplying all components with a scalar.
*
* @param m
* @return the same vector
*/
public Vector multiply(double m) {
x *= m;
y *= m;
z *= m;
return this;
}
/**
* Performs scalar multiplication, multiplying all components with a scalar.
*
* @param m
* @return the same vector
*/
public Vector multiply(float m) {
x *= m;
y *= m;
z *= m;
return this;
}
/**
* Calculates the dot product of this vector with another. The dot product
* is defined as x1*x2+y1*y2+z1*z2. The returned value is a scalar.
*
* @param other
* @return dot product
*/
public double getDotProduct(Vector other) {
return x * other.x + y * other.y + z * other.z;
}
/**
* Calculates the cross product of this vector with another. The cross
* product is defined as:
*
* x = y1 * z2 - y2 * z1<br/>
* y = z1 * x2 - z2 * x1<br/>
* z = x1 * y2 - x2 * y1
*
* @param o
* @return the same vector
*/
public Vector crossProduct(Vector o) {
double newX = y * o.z - o.y * z;
double newY = z * o.x - o.z * x;
double newZ = x * o.y - o.x * y;
x = newX;
y = newY;
z = newZ;
return this;
}
/**
* Converts this vector to a unit vector (a vector with length of 1).
*
* @return the same vector
*/
public Vector unitVector() {
double length = length();
x /= length;
y /= length;
z /= length;
return this;
}
/**
* Gets a unit vector of this vector. This vector will not be chagned.
*
* @return a brand new vector
*/
public Vector getUnitVector() {
double length = length();
return new Vector(x / length, y / length, z / length);
}
/**
* Returns whether this vector is in a cuboid. The minimum and maximum
* vectors given must be truly the minimum and maximum X, Y and Z
* components.
*
* @param min
* @param max
* @return whether this vector is in the cuboid
*/
public boolean isInCuboid(Vector min, Vector max) {
return x >= min.x && x <= max.x
&& y >= min.y && y <= max.y
&& z >= min.z && z <= max.z;
}
/**
* Returns whether this vector is within a sphere.
*
* @param origin
* @param radius
* @return whether this vector is in the sphere
*/
public boolean isInSphere(Vector origin, double radius) {
return origin.clone().subtract(this).length() <= radius;
}
public double getX() {
return x;
}
public double getY() {
return y;
}
public double getZ() {
return z;
}
public Vector setX(int x) {
this.x = x;
return this;
}
public Vector setX(double x) {
this.x = x;
return this;
}
public Vector setX(float x) {
this.x = x;
return this;
}
public Vector setY(int y) {
this.y = y;
return this;
}
public Vector setY(double y) {
this.y = y;
return this;
}
public Vector setY(float y) {
this.y = y;
return this;
}
public Vector setZ(int z) {
this.z = z;
return this;
}
public Vector setZ(double z) {
this.z = z;
return this;
}
public Vector setZ(float z) {
this.z = z;
return this;
}
@Override
public boolean equals(Object obj) {
if (!(obj instanceof Vector)) {
return false;
}
Vector other = (Vector)obj;
return Double.doubleToLongBits(x) == Double.doubleToLongBits(other.x)
&& Double.doubleToLongBits(y) == Double.doubleToLongBits(other.y)
&& Double.doubleToLongBits(z) == Double.doubleToLongBits(other.z);
}
@Override
public int hashCode() {
return ((int)Double.doubleToLongBits(x) >> 13) ^
((int)Double.doubleToLongBits(y) >> 7) ^
(int)Double.doubleToLongBits(z);
}
@Override
public Vector clone() {
return new Vector(x, y, z);
}
@Override
public String toString() {
return x + "," + y + "," + z;
}
public Location toLocation(World world) {
return new Location(world, x, y, z);
}
public Location toLocation(World world, float yaw, float pitch) {
return new Location(world, x, y, z, yaw, pitch);
}
/**
* Gets the minimum components of two vectors.
*
* @param v1
* @param v2
* @return minimum
*/
public static Vector getMinimum(Vector v1, Vector v2) {
return new Vector(
Math.min(v1.x, v2.x),
Math.min(v1.y, v2.y),
Math.min(v1.z, v2.z));
}
/**
* Gets the maximum components of two vectors.
*
* @param v1
* @param v2
* @return maximum
*/
public static Vector getMaximum(Vector v1, Vector v2) {
return new Vector(
Math.max(v1.x, v2.x),
Math.max(v1.y, v2.y),
Math.max(v1.z, v2.z));
}
}
package org.bukkit;
/**
* Represents a mutable vector.
*
* @author sk89q
*/
public class Vector implements Cloneable {
private static final long serialVersionUID = -2657651106777219169L;
protected double x;
protected double y;
protected double z;
public Vector(int x, int y, int z) {
this.x = x;
this.y = y;
this.z = z;
}
public Vector(double x, double y, double z) {
this.x = x;
this.y = y;
this.z = z;
}
public Vector(float x, float y, float z) {
this.x = x;
this.y = y;
this.z = z;
}
/**
* Adds the vector by another.
*
* @param vec
* @return the same vector
*/
public Vector add(Vector vec) {
x += vec.x;
y += vec.y;
z += vec.z;
return this;
}
/**
* Subtracts the vector by another.
*
* @param vec
* @return the same vector
*/
public Vector subtract(Vector vec) {
x -= vec.x;
y -= vec.y;
z -= vec.z;
return this;
}
/**
* Multiplies the vector by another.
*
* @param vec
* @return the same vector
*/
public Vector multiply(Vector vec) {
x *= vec.x;
y *= vec.y;
z *= vec.z;
return this;
}
/**
* Divides the vector by another.
*
* @param vec
* @return the same vector
*/
public Vector divide(Vector vec) {
x /= vec.x;
y /= vec.y;
z /= vec.z;
return this;
}
/**
* Gets the magnitude of the vector, defined as sqrt(x^2+y^2+z^2). The value
* of this method is not cached and uses a costly square-root function, so
* do not repeatedly call this method to get the vector's magnitude. NaN
* will be returned if the inner result of the sqrt() function overflows,
* which will be caused if the length is too long.
*
* @return the magnitude
*/
public double length() {
return Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2) + Math.pow(z, 2));
}
/**
* Get the distance between this vector and another. The value
* of this method is not cached and uses a costly square-root function, so
* do not repeatedly call this method to get the vector's magnitude. NaN
* will be returned if the inner result of the sqrt() function overflows,
* which will be caused if the distance is too long.
*
* @return the distance
*/
public double distance(Vector o) {
return Math.sqrt(Math.pow(x - o.x, 2) + Math.pow(y - o.y, 2)
+ Math.pow(z - o.z, 2));
}
/**
* Performs scalar multiplication, multiplying all components with a scalar.
*
* @param m
* @return the same vector
*/
public Vector multiply(int m) {
x *= m;
y *= m;
z *= m;
return this;
}
/**
* Performs scalar multiplication, multiplying all components with a scalar.
*
* @param m
* @return the same vector
*/
public Vector multiply(double m) {
x *= m;
y *= m;
z *= m;
return this;
}
/**
* Performs scalar multiplication, multiplying all components with a scalar.
*
* @param m
* @return the same vector
*/
public Vector multiply(float m) {
x *= m;
y *= m;
z *= m;
return this;
}
/**
* Calculates the dot product of this vector with another. The dot product
* is defined as x1*x2+y1*y2+z1*z2. The returned value is a scalar.
*
* @param other
* @return dot product
*/
public double getDotProduct(Vector other) {
return x * other.x + y * other.y + z * other.z;
}
/**
* Calculates the cross product of this vector with another. The cross
* product is defined as:
*
* x = y1 * z2 - y2 * z1<br/>
* y = z1 * x2 - z2 * x1<br/>
* z = x1 * y2 - x2 * y1
*
* @param o
* @return the same vector
*/
public Vector crossProduct(Vector o) {
double newX = y * o.z - o.y * z;
double newY = z * o.x - o.z * x;
double newZ = x * o.y - o.x * y;
x = newX;
y = newY;
z = newZ;
return this;
}
/**
* Converts this vector to a unit vector (a vector with length of 1).
*
* @return the same vector
*/
public Vector unitVector() {
double length = length();
x /= length;
y /= length;
z /= length;
return this;
}
/**
* Gets a unit vector of this vector. This vector will not be chagned.
*
* @return a brand new vector
*/
public Vector getUnitVector() {
double length = length();
return new Vector(x / length, y / length, z / length);
}
/**
* Returns whether this vector is in a cuboid. The minimum and maximum
* vectors given must be truly the minimum and maximum X, Y and Z
* components.
*
* @param min
* @param max
* @return whether this vector is in the cuboid
*/
public boolean isInCuboid(Vector min, Vector max) {
return x >= min.x && x <= max.x
&& y >= min.y && y <= max.y
&& z >= min.z && z <= max.z;
}
/**
* Returns whether this vector is within a sphere.
*
* @param origin
* @param radius
* @return whether this vector is in the sphere
*/
public boolean isInSphere(Vector origin, double radius) {
return (Math.pow(origin.x - x, 2)
+ Math.pow(origin.y - y, 2)
+ Math.pow(origin.z - z, 2))
<= Math.pow(radius, 2);
}
public double getX() {
return x;
}
/**
* Gets the floored value of the X component, indicating the block that
* this vector is contained with.
*
* @return block X
*/
public int getBlockX() {
return (int)Math.floor(x);
}
public double getY() {
return y;
}
/**
* Gets the floored value of the Y component, indicating the block that
* this vector is contained with.
*
* @return block y
*/
public int getBlockY() {
return (int)Math.floor(y);
}
public double getZ() {
return z;
}
/**
* Gets the floored value of the Z component, indicating the block that
* this vector is contained with.
*
* @return block z
*/
public int getBlockZ() {
return (int)Math.floor(z);
}
public Vector setX(int x) {
this.x = x;
return this;
}
public Vector setX(double x) {
this.x = x;
return this;
}
public Vector setX(float x) {
this.x = x;
return this;
}
public Vector setY(int y) {
this.y = y;
return this;
}
public Vector setY(double y) {
this.y = y;
return this;
}
public Vector setY(float y) {
this.y = y;
return this;
}
public Vector setZ(int z) {
this.z = z;
return this;
}
public Vector setZ(double z) {
this.z = z;
return this;
}
public Vector setZ(float z) {
this.z = z;
return this;
}
@Override
public boolean equals(Object obj) {
if (!(obj instanceof Vector)) {
return false;
}
Vector other = (Vector)obj;
return Double.doubleToLongBits(x) == Double.doubleToLongBits(other.x)
&& Double.doubleToLongBits(y) == Double.doubleToLongBits(other.y)
&& Double.doubleToLongBits(z) == Double.doubleToLongBits(other.z);
}
@Override
public int hashCode() {
return ((int)Double.doubleToLongBits(x) >> 13) ^
((int)Double.doubleToLongBits(y) >> 7) ^
(int)Double.doubleToLongBits(z);
}
@Override
public Vector clone() {
return new Vector(x, y, z);
}
@Override
public String toString() {
return x + "," + y + "," + z;
}
public Location toLocation(World world) {
return new Location(world, x, y, z);
}
public Location toLocation(World world, float yaw, float pitch) {
return new Location(world, x, y, z, yaw, pitch);
}
/**
* Gets the minimum components of two vectors.
*
* @param v1
* @param v2
* @return minimum
*/
public static Vector getMinimum(Vector v1, Vector v2) {
return new Vector(
Math.min(v1.x, v2.x),
Math.min(v1.y, v2.y),
Math.min(v1.z, v2.z));
}
/**
* Gets the maximum components of two vectors.
*
* @param v1
* @param v2
* @return maximum
*/
public static Vector getMaximum(Vector v1, Vector v2) {
return new Vector(
Math.max(v1.x, v2.x),
Math.max(v1.y, v2.y),
Math.max(v1.z, v2.z));
}
}